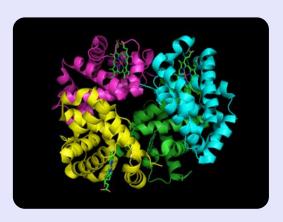


BMEG 3102 Bioinformatics

Protein Function Prediction

Cheung Ho Lun 1155174348

Chan Cheuk Ka 1155174356

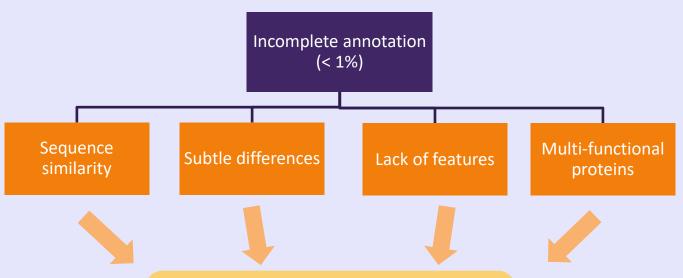


Protein Function Prediction

- **01** Introduction
- 02 Approach 1: DEEPred
- O3 Approach 2: DeepGraphGO
- 04 Approach 3: DeepFRI
- 05 Implications

Background

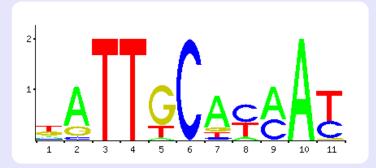
Haemoglobin



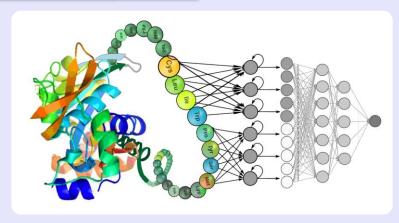
- Red blood cell
- Transport of oxygen

- Structural features of protein
- Understanding life process
- Drug development
- Personalised medicine

- Accuracy limitations
- Difficult to predict rare functions


Fujita, S., & Terada, T, Computational and Structural Biotechnology Journal, 2024

Jeffery, C. J. , Frontiers in Bioinformatics, 2023



Bioinformatics

- Motif-based methods
- Deep learning frameworks
- Protein language models
- Gene Ontology (GO)

1 Transcription factor motifs. Nature, 2019

Ingrid Fadelli, Phys.org, 2022

Implications

DEEPred^[a]

Protein sequence

Amino acid sequence
In ? ?

GO terms

with confidence values

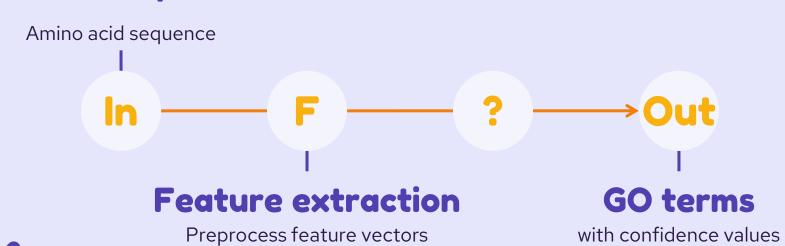
[a] A. Sureyya Rifaioglu et al., Scientific Reports, 2019

ntroduction

DEEPred

DeepGraphGO

DeepFR


Implications

DEEPred^[a]

Protein sequence

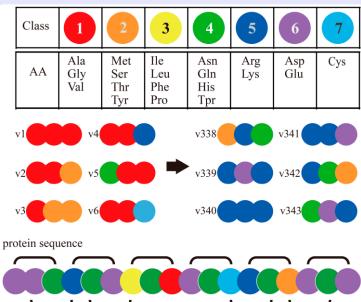
Preprocess feature vectors

DEEPred

DeepGraphGO

DeepFRI

DEEPred^[a]


[Suppl. Info]

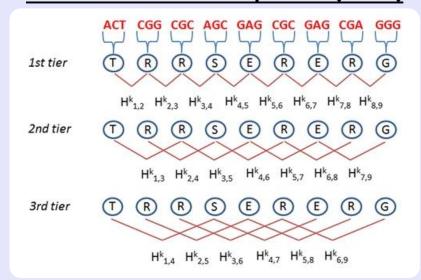
Feature extraction

Preprocess feature vectors

- 1 Assign class
- Record triplet frequency

Conjoint Triad

J.-W. Chang et al., International Journal of Molecular Sciences, 2016


[Suppl. Info]

Feature extraction

Preprocess feature vectors

Pseudo-Amino Acid Composition (PACC)

I. Limongelli, S. Marini et al., BMC Bioinformatics, 2015

Preprocess feature vectors

Subsequence profile map (SPMap)

... MKLRFTAISHGWQNEVPTYAL...

↓ Subsequences

MKLRFT FTAISH

QNEVP

•••

Clustering information

DEEPred

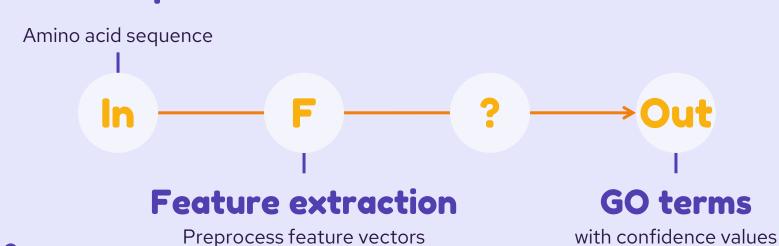
DeepGraphGO

DeepFRI

Implications

DEEPred^[a]

Preprocess feature vectors


Model & GO level GO term id				Predictive	performance (F1-	nce (F1-score)	
		GO description	# of annotated proteins	SPMap	Pseudo-amino acid composition	Conjoint triad	
	GO:0036094	small molecule binding	1 847			0.23	
	GO:0003700	DNA binding transcription factor activity	1 652				
Model 1 (GO level: 2)	GO:0004872	receptor activity	1 332	0.49	0.29		
(Go level, 2)	GO:0044877	protein-containing complex binding	1 296				
	GO:0097367	carbohydrate derivative binding	1 252				
	GO:0004529	exodeoxyribonuclease activity	50			0.38	
	GO:0045309	protein phosphorylated amino acid binding	50				
Model 2 (GO level: 4)	GO:0008395	steroid hydroxylase activity	49	0.68	0.53		
(GO level. 4)	GO:0008649	rRNA methyltransferase activity	49				
	GO:0015645	fatty acid ligase activity	49				
Model 3 (GO level: 7)	GO:0001012	RNA polymerase II regulatory region DNA binding	818		74 0.53		
	GO:0016887	ATPase activity	764				
	GO:0046873	metal ion transmembrane transporter activity	685	0.74		0.47	
	GO:0001159	core promoter proximal region DNA binding	504	1 1			
	GO:0015077	monovalent inorganic cation transmembrane transporter activity	ic cation transmembrane 480				

DEEPred^[a]

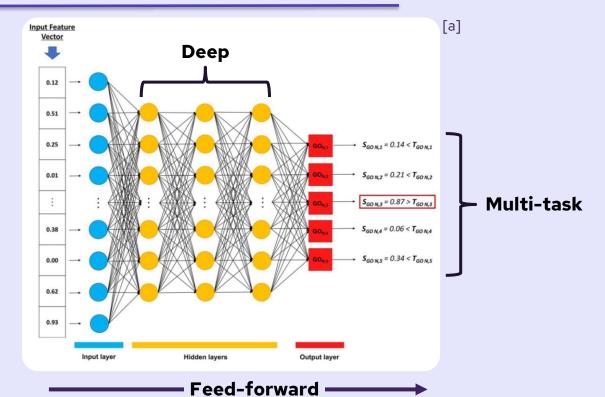
Protein sequence

DEEPred [a]

Protein sequence

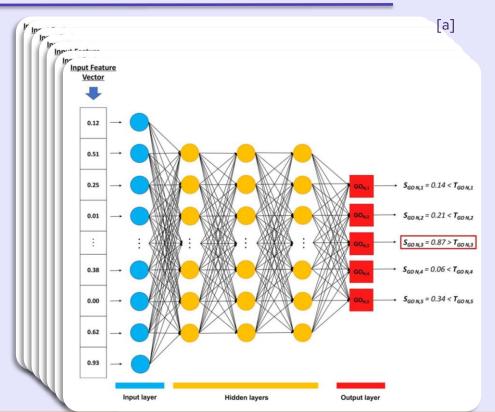
Deep Neural Network

Feature extraction


Preprocess feature vectors

GO terms

with confidence values


Introduction DEEPred DeepGraphGO DeepFRI

×1101

DeepGraphGO DeepFRI Implications

DEEPred

Different broadness

GO term 1: **Broad (40%)**

GO term 2: **Common (10%)**

GO term 3: Narrow (5%)

GO term 4: **Narrow (2%)**

GO term 5: Very Narrow (1%)

Different broadness

GO term 1: **Broad (40%)** ← Always choose this

GO term 2: **Common (10%)**GO term 3: **Narrow (5%)**

GO term 4: **Narrow (2%)**

GO term 5: Very Narrow (1%)

High accuracy without learning

Different broadness

GO term 1: **Broad (40%)** ← Always choose this

GO term 2: **Common (10%)**GO term 3: **Narrow (5%)**

GO term 4: **Narrow (2%)**

GO term 5: Very Narrow (1%)

High accuracy without learning

Same broadness

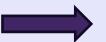
GO term 1: Common (8%)

GO term 2: **Common (10%)**

GO term 3: Common (9%)

GO term 4: **Common (11%)**

GO term 5: **Common (7%)**


Different broadness

GO term 1: **Broad (40%)** \leftarrow Always choose this

GO term 2: **Common (10%)**GO term 3: **Narrow (5%)**

GO term 4: **Narrow (2%)**

GO term 5: Very Narrow (1%)

High accuracy without learning

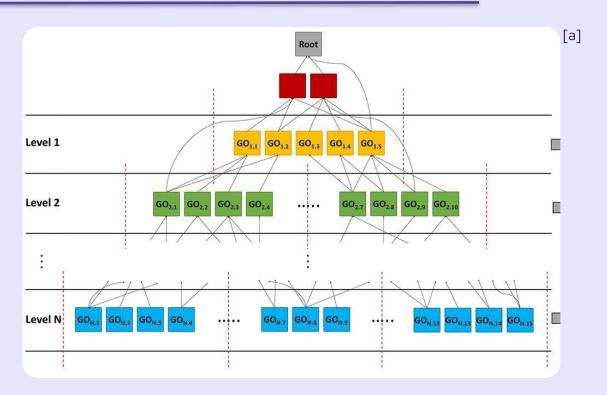
Same broadness

GO term 1: **Common (8%)** ← Always choose this

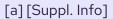
GO term 2: **Common (10%)**

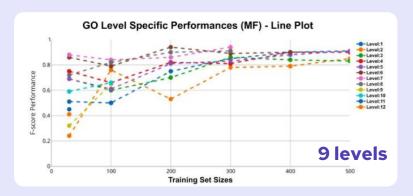
GO term 3: Common (9%)

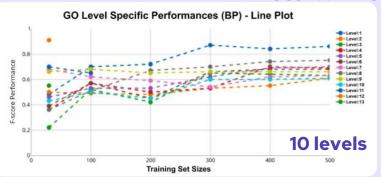
GO term 4: **Common (11%)**

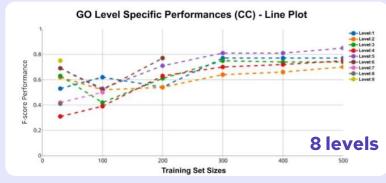

GO term 5: **Common (7%)**

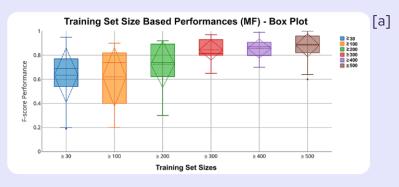
LOW accuracy without learning

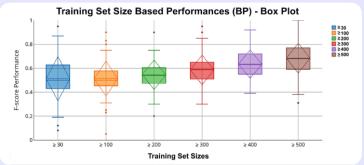


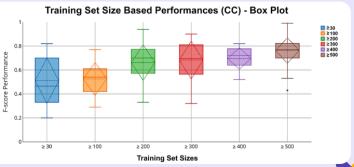




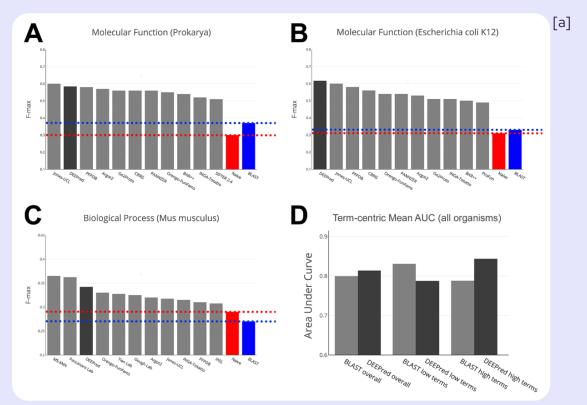







DEEPred results

	Performance measures (F1-score) for different training dataset sizes					
GO categories	≥ 30	≥ 100	≥ 200	≥ 300	≥ 400	≥ 500
Molecular Function	0.66	0.68	0.77	0.82	0.82	0.83
Biological Process	0.42	0.50	0.52	0.52	0.56	0.55
Cellular Component	0.50	0.59	0.64	0.63	0.64	0.65



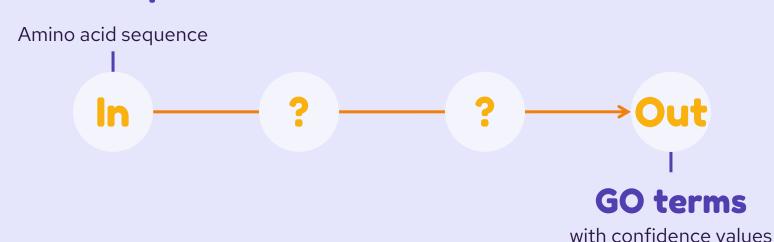

why DEEPred?

Hyper-optimised [a] [Suppl. Info]

Tested with 100,000 different hyper-parameters

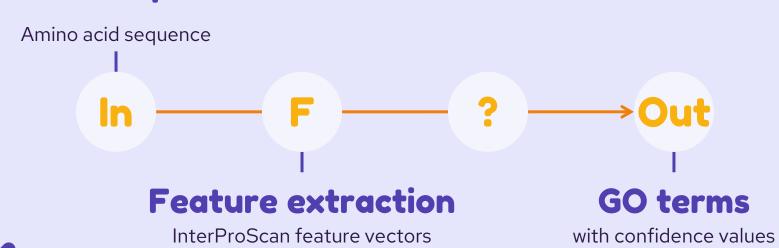
Trained with noisy data (Experimental & Electronic)

Fast to train (Parallelisable)


DEEPred

DeepGraphGO[b]

Protein sequence


[b] R. You et al., Bioinformatics, 2021

DeepGraphGO[b]

Protein sequence

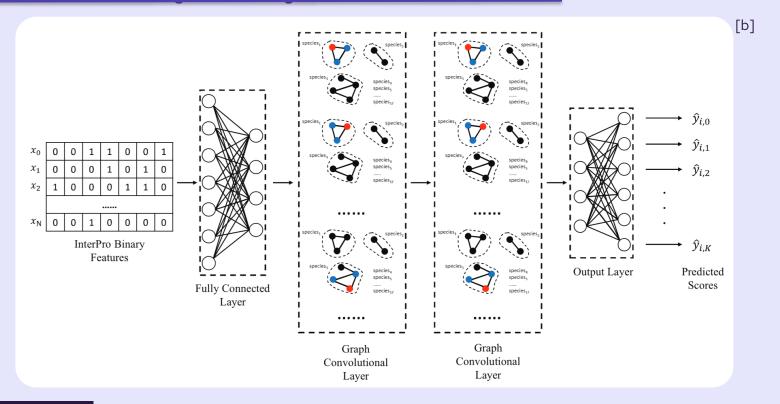
DeepGraphGO[b]

Protein sequence

Graph Neural Network

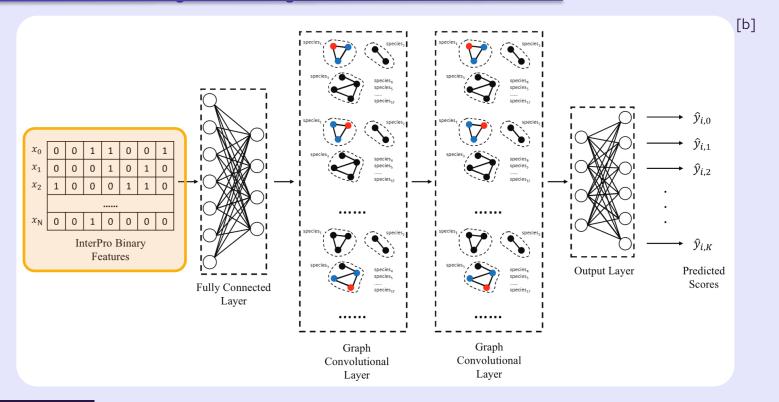
Amino acid sequence with Graph Convolutional Layers

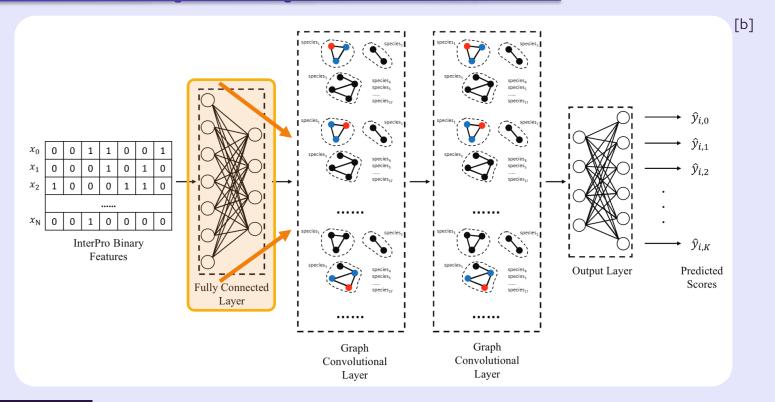
In — GNN— Out

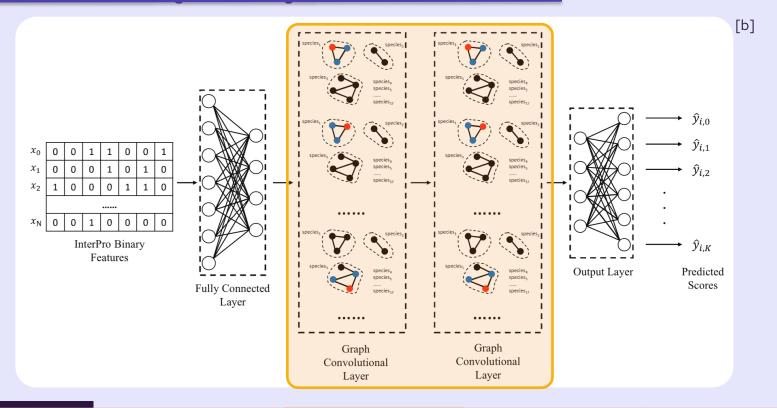

Feature extraction

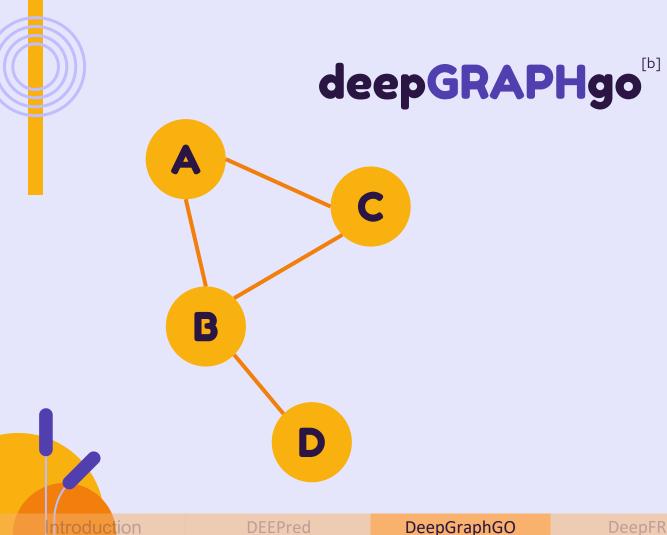
InterProScan feature vectors

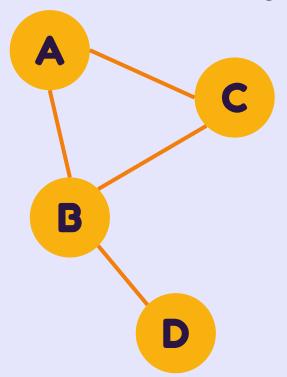
GO terms


with confidence values



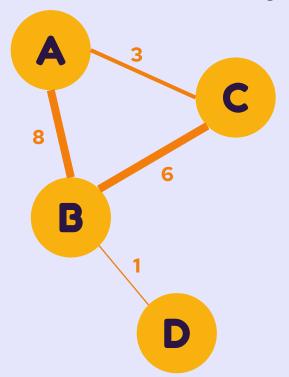






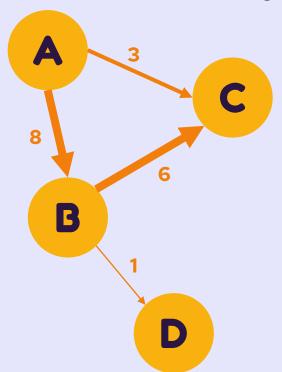
DEEPred DeepGraphGO **Implications**

deepGRAPHgo^[b]

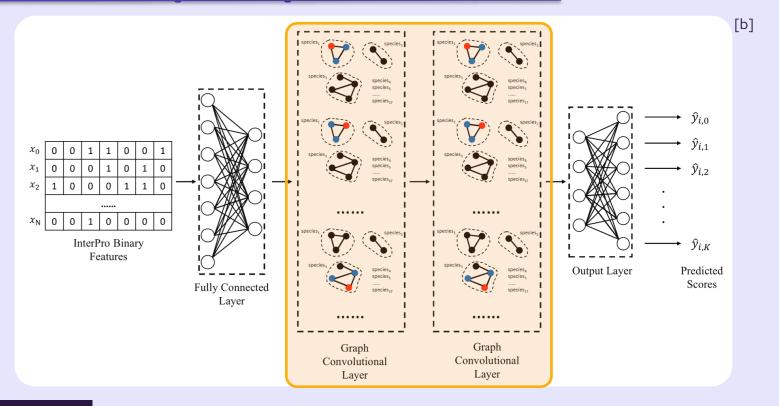


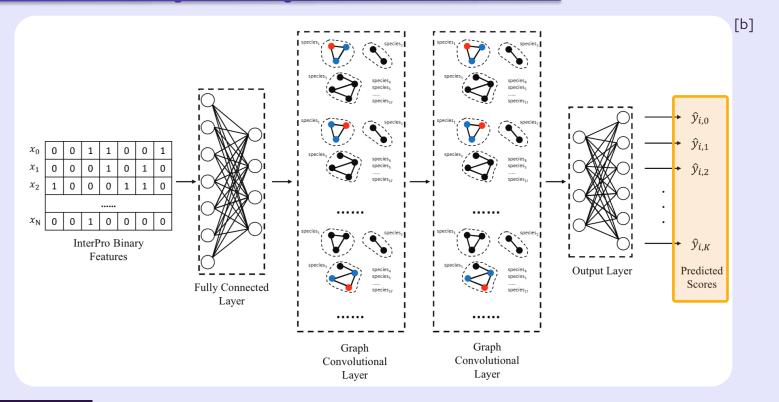
	A	В	С	D
A	_	1	1	Ο
В	1	_	1	1
С	1	1	_	O
D	0	1	0	_

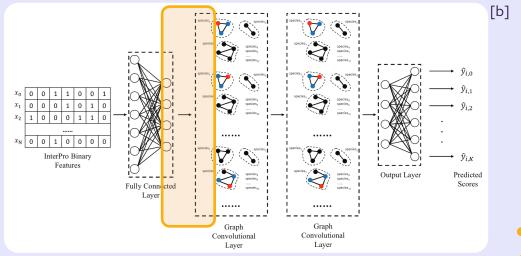
deepGRAPHgo^[b]

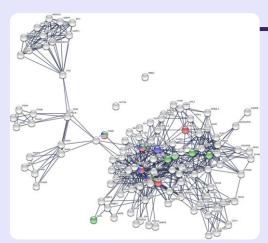


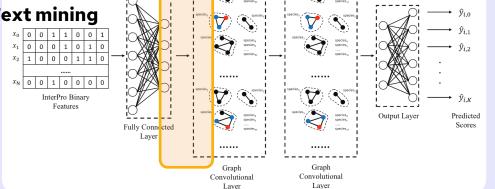
	A	В	С	D
A	_	8	3	0
В	8	_	6	1
С	3	6	_	O
D	O	1	O	_


deepGRAPHgo^[b]


	A	В	С	D
A	_	8	3	О
В	-8	_	6	1
С	-3	-6	_	О
D	O	-1	0	_



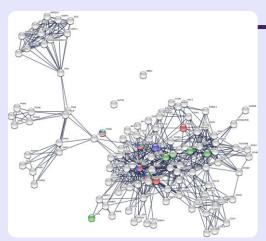




S.-J. Chen et al., Scientific Reports, 2019

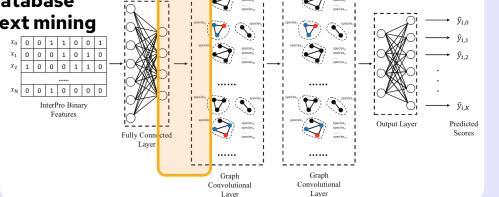
STRING database

- Neighbourhood
- **Fusion**
- **Co-occurrence**
- **Co-expression**
- **Experiment**
- **Database**
- **Text mining**



[b]

DeepGraphGO Introduction



S.-J. Chen et al., Scientific Reports, 2019

STRING database

- Neighbourhood
- **Fusion**
- **Co-occurrence**
- **Co-expression**
- **Experiment**
- **Database**
- **Text mining**

×17 species (human, mouse, rice, yeast, doc

[b]

DeepGraphGO Introduction

why DeepGraphGO?

Multi-species

One model fits all

Transfer learning

Easy to expand the PPI network

PPI Network information >> Sequence information

DeepGraphGO results

[b]	[Suppl	l. Info
-----	--------	---------

Method	F_{max}		AUPR			
	MFO	BPO	CCO	MFO	BPO	CCO
BLAST-KNN	0.592	0.274	0.652	0.458	0.114	0.572
	5.22e-52	1.49e-92	9.14e-87	8.68e-76	6.36e-100	3.98e-112
LR-Inter Pro	0.617	0.280	0.661	0.532	0.145	0.671
	3.04e-14	1.91e-96	6.53e-85	8.11e-20	1.80e-87	5.71e-49
Net-KNN	0.425	0.306	0.667	0.274	0.157	0.642
	7.94e-116	1.57e-59	2.05e-75	2.93e-111	1.02e-66	2.47e-80
DeepGOCNN	0.436	0.248	0.633	0.309	0.102	0.573
	2.30e-111	1.02e-106	1.24e-103	2.46e-108	2.56e-99	1.01e-113
DeepGOPlus	0.597	0.291	0.674	0.402	0.110	0.596
	5.150 49	1.40c 77	2.140 57	1.55c 97	4.63c 104	3.400 108
DeepGraphGO	0.624	0.327	0.692	0.545	0.195	0.695



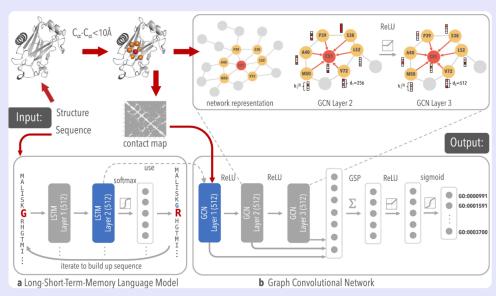
Table 7. Performance comparison on difficult proteins

Method	F _{max}	F _{max}			
	MFO	ВРО	CCO		
BLAST-KNN	0.534	0.274	0.521		
LR-InterPro	0.589	0.275	0.613		
Net-KNN	0.404	0.292	0.595		
DeepGOCNN	0.406	0.243	0.578		
DeepGOPlus	0.564	0.292	0.602		
DeepGraphGO	0.598	0.322	0.625		

Table 5. Performance comparison on proteins in HUMAN and [b] MOUSE

Method	F_{max}			AUPR		
	MFO	BPO	CCO	MFO	BPO	CCO
		HUMAN (9606)				
BLAST-KNN	0.471	0.241	0.555	0.296	0.074	0.384
LR-InterPro	0.593	0.282	0.650	0.496	0.138	0.603
Net-KNN	0.485	0.261	0.615	0.358	0.143	0.620
DeepGOCNN	0.468	0.263	0.594	0.327	0.114	0.552
DeepGOPlus	0.501	0.277	0.625	0.246	0.088	0.479
DeepGraphGO	0.633	0.320	0.655	0.520	0.178	0.642
		MOUSE (10090)				
BLAST-KNN	0.681	0.289	0.593	0.593	0.105	0.441
LR-InterPro	0.628	0.312	0.592	0.625	0.175	0.569
Net-KNN	0.420	0.302	0.588	0.319	0.167	0.569
DeepGOCNN	0.475	0.258	0.574	0.405	0.129	0.495
DeepGOPlus	0.634	0.306	0.598	0.550	0.132	0.488
DeepGraphGO	0.650	0.329	0.638	0.651	0.201	0.634

ntroduction


DeepGraphGO limitation

GNNs are very slow to train

DeepFRI - Graph Convolution Network

Predict protein function by extracting features from sequences and protein structure

Schematic of DeepFRI

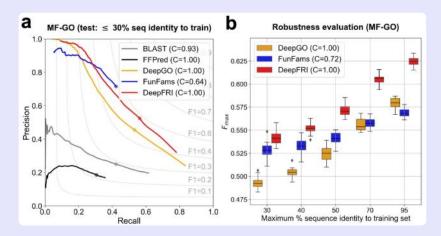
Gligorijević, Nature Communications, 2020

Extract residue-level LSTM-LM is pre-trained from protein database features

The extracted features with contact maps are the inputs for second stage

Construct protein-level features

Compared to other methods:


- 1. 2 sequence-based annotation transfer method (BLAST, FunFams)
- 2. Deep learning method (DeepGO)
- Feature engineering-based machine learning method (FFPred)

Implications

DeepFRI

DeepFRI performance

Precision-recall curves showing the performance of different methods

From figure a,

- Better protein-centric F_{max}
- Better performance in Molecular Function (MF) and Biological Process (BP)

From figure b,

- Predict MF-GO proteins with < 30% sequence identity to the training set
- DeepFRI has highest F_{max} (0.545)
- Outperforms FunFams and DeepGO

Gligorijević, Nature Communications, 2020

DeepFRI

DeepFRI performance

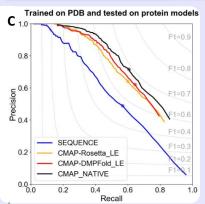
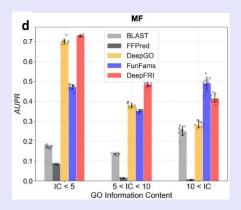


Figure c shows the result of training DeepFRI from Protein Data Bank


- DeepFRI has higher performance for native structures, DMPFold models and Rosetta models
- Significant denoising capability of DeepFRI

Gligorijević, Nature Communications, 2020

Precision-recall curves showing the performance of DeepFRI on 700 protein contact maps

From figure d,

- DeepFRI predicts more specific MF-GO terms with fewer examples
- For proteins well represented in training set, DeepFRI has a comparable performance to FunFams

Distribution of AUPR score on MF-GO terms of different levels of specificities



ntroduction DEEPred Dee

DeepGraphGO

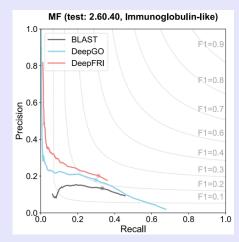
DeepFRI

DeepFRI highlights

(Right) Gradient-weighted class activation map for calcium ion binding (Left) 3D structure of a rat protein

From figure e,

- DeeprFRI correctly identify functional sites for calcium ions binding of protein
- The two highest peaks are the calcium-binding residues in the structure of the protein



Gligorijević, Nature Communications, 2020

Implications

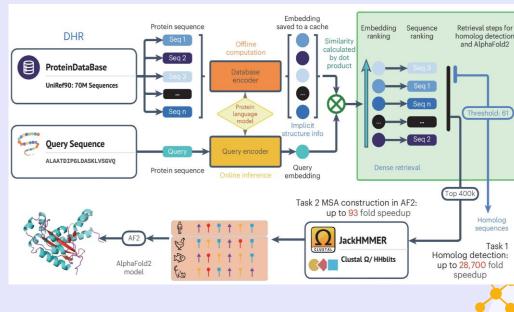
Introduction DEEPred DeepGraphGO DeepFRI

DeepFRI limitation

From supplementary information,

Precision-Recall curves showing the performance of DeepFRI compares to DeepGO and BLAST of PDB chains from the top 4 largest CATH folds

- DeepFRI has lower performance for unseen protein models
- Limited capture of long-distance structural correlations


Gligorijević, Nature Communications, 2020

- "Fast, sensitive detection of protein homologs using deep dense retrieval"
- Published in *Nature biotechnology* in 2024, by Prof. Yu Li

In simple words,

- Convert protein sequences into a special "vector" using a protein language model
- Compare vectors
- Skip alignment and just compare the vector representation
- Contrastive learning to increase accuracy

- Protein function prediction Hot research topic
- Deep learning methods >>> Sequence-based methods
- Some limitations are still unsolved

THANK YOU

