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Background

Haemoglobin

l * Red blood cell

* Transport of oxygen

* Understanding life process

SRy * Drugdevelopment

e Personalised medicine

https://microbenotes.com/hemoglobin/
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Problem

Incomplete annotation
(< 1%)

Multi-functional
proteins

SEEUENEE Subtle differences Lack of features

similarity

Fujita, S., & Terada, T, Computational and
* Accuracy limitations Structural Biotechnology Journal, 2024

e Difficult to predict rare functions Jeffery, C. )., Frontiers in Bioinformatics, 2023
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Bioinformatics

Motif-based methods

Deep learning frameworks

Protein language models
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* Gene Ontology (GO)

RIE

1 Transcription factor motifs. Nature, 2019
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Ingrid Fadelli, Phys.org, 2022
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DEEPred "

Protein sequence

Amino acid sequence

|
' GO terms

with confidence values
“ [a] A. Sureyya Rifaioglu et al., Scientific Reports, 2019
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DEEPred "

Protein sequence

Amino acid sequence

——
| |
Feature extraction GO terms
' Preprocess feature vectors with confidence values
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Feature extraction

Preprocess feature vectors
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[Suppl. Info]




DEEPred "

[Suppl. Info]
Conjoint Triad
| - @O 000
Feature extraction © Assign e RIS T e e
Preprocess feature vectors class AA [ Gly | Ser |Leu | Gln | Lys | Glu
Val Thr | Phe His
Tyr Pro Tpr
Record

triplet v2. v5~ => v339~ v342.
frequency

protein sequence
' r N 7 N 7 N 7 N T N a Y
\ J J N J J

J.-W. Chang et al., International Journal of Molecular Sciences, 2016
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[Suppl. Info]
Pseudo-Amino Acid Composition (PACC)

ACT CGG CGC AGC GAG CGC GAG CGA GGG

!
T T

Feature extraction
Preprocess feature vectors 1st tier ® @ @ ® @ ® @
b e T Y e VT
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k k 3 k
H 4,6 H 5,7 H 6,8 H 79

2nd tier

k k k
H% 3 H%s HYs

OOO®OOE®O®®G

k k k
H 4,7 H 58 H 6,9

3rd tier

k k k
H 14 H 2,5 H 3,6

' I. Limongelli, S. Marini et al., BMC Bioinformatics, 2015
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Feature extraction

Preprocess feature vectors

DEEPred

DEEPred "

[Suppl. Info]

Subsequence profile map (SPMap)
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¥ Subsequences
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Clustering information




|
Feature extraction

Preprocess feature vectors

V-

Introduct DEEPred

DEEPred "

Predictive performance (F1-score)

Model & GO # of annotated Pseudo-amino Conjoint
level GO termid | GO description proteins SPMap | acid composition | triad
G0:0036094 | small molecule binding 1847
GO:0003700 | DNA binding transcription factor activity 1652
Model 1 —
(GO level: 2) GO:0004872 | receptor activity 1332 0.49 0.29 0.23
GO:0044877 | protein-containing complex binding 1296
GO:0097367 | carbohydrate derivative binding 1252
GO:0004529 | exodeoxyribonuclease activity 50
G0:0045309 | protein phosphorylated amino acid binding 50
Model 2 - —
(GO level: 1) GO:0008395 | steroid hydroxylase activity 49 0.68 0.53 0.38
GO:0008649 | rRNA methyltransferase activity 49
G0:0015645 | fatty acid ligase activity 49
GO0:0001012 | RNA polymerase II regulatory region DNA binding | 818
GO:0016887 | ATPase activity 764
{\éogijel‘ ” GO0:0046873 | metal ion transmembrane transporter activity 685 0.74 0.53 0.47
) GO:0001159 | core promoter proximal region DNA binding 504
GO:0015077 monovalent inorganic cation transmembrane 480

transporter activity




DEEPred "

Protein sequence

Amino acid sequence

——
| |
Feature extraction GO terms
' Preprocess feature vectors with confidence values
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Introduct DEEPred




DEEPred "

Protein sequence  Deep Neural Network

Amino acid sequence Multi-task feed-forward DNN stack
I I
—
I I
Feature extraction GO terms
Preprocess feature vectors with confidence values

s

Introduct DEEPred
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DEEPred architecture

Input Feature (a]
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DEEPred architecture
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DEEPred architecture

Different broadness

GO term1: Broad (40%)

GO term 2: Common (10%)
GO term 3: Narrow (5%)

GO term 4: Narrow (2%)

GO term 5: Very Narrow (1%)

)11 1
DEEPred




DEEPred architecture

Different broadness

GO term1: Broad (40%) ¢ Always choose this
GO term 2: Common (10%)

GO term 3: Narrow (5%) ‘ V"V'I'g]';jt‘l‘;‘:;?;y
GO term 4: Narrow (2%) g
GO term 5: Very Narrow (1%)

)11 1
DEEPred



DEEPred architecture

Different broadness
GO term1: Broad (40%) ¢ Always choose this
GO term 2: Common (10%) High accuracy
ORI 55 LI (), ‘ without learning
GO term 4: Narrow (2%)
GO term 5: Very Narrow (1%)

Same broadness

GO term1: Common (8%)
GO term 2: Common (10%)
GO term 3: Common (9%)
GO term 4. Common (11%)
GO term 5: Common (7%)

)11 1
DEEPred



DEEPred architecture

Different broadness

GO term1: Broad (40%) ¢ Always choose this

GO term 2: Common (10%) High accuracy
GO term 3: Narrow (5%) ‘ without learning
GO term 4: Narrow (2%)

GO term 5: Very Narrow (1%)

Same broadness
GO term I: Common (8%) ¢ Always choose this
GO term 2: Common (10%) LOW accuracy
SO eI 25 (Sl (), ‘ without learning
GO term 4. Common (11%)
GO term 5: Common (7%)

)11 1
DEEPred
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DEEPred architecture
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DEEPred architecture

GO Level Specific Performances (MF) - Line Plot GO Level Specific Performances (BP) - Line Plot
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DEEPred results <

Training Set Size Based Performances (MF) - Box Plot [a]
E 06/ : B - 4 .
Molecular Function 0.66 | 0.68 0.77 0.82 0.82 0.83 “‘ ) \/
7
Biological Process 0.42 |0.50 0.52 0.52 0.56 0.55 " -+
Cellular Component | 0.50 | 0.59 0.64 0.63 0.64 0.65 P oo =T = v =
Training Set Sizes
Training Set Size Based Performances (BP) - Box Plot Training Set Size Based Performances (CC) - Box Plot

iy

=30 2100 2200 2300 2400 2500
Training Set Sizes Training Set Sizes

F-score Performance

I
F-score Performance
s

=30 2100 =200 =300 400 =500

oduction DEEPred I DeepGraphGO | DeepFRI Implications



DEEPred results

A Molecular Function (Prokarya) B Molecular Function (Escherichia coli K12)
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RAK why DEEPred? %

[a][Suppl. Info]

Hyper-optimised Noise-tolerant
Tested with 100,000 Trained with noisy data
different hyper-parameters (Experimental & Electronic)
Scalable
Fast to train
(Parallelisable) x
B
-'“ DEEPred | DeepGraphGO DeepFRI



DeepGraphGO"

Protein sequence

Amino acid sequence

|
' GO terms

with confidence values

[b]R. You et al., Bioinformatics, 2021
Introduct DeepGraphGO




DeepGraphGO"

Protein sequence

Amino acid sequence

I
' Feature extraction

InterProScan feature vectors

Introduct DeepGraphGO

|
GO terms

with confidence values




DeepGraphGO"

Protein sequence  Graph Neural Network

Amino acid sequence with Graph Convolutional Layers
I I
—
I I
Feature extraction GO terms
InterProScan feature vectors with confidence values

s

Introduct DeepGraphGO




) 4
IS

DeepGraphGO architecture

Xo| 0|01

X1|0|0]|0

X2|1(0]|0

w[olol1]elo]o]o

InterPro Binary
Features

Fully Connected
Layer

species; ,# s~ ;
S Sy species,
' ! species,
H )
D [
>~ '
-9, speciesy

species, .’ ~=-

species, ¢
species,
species,
species;,

s:E:\Es\
species,
species,
speciesy;

—— e e e e e e e e ey

V g Specieny

L

oo =~ spemssz
[l
K

/

Graph
Convolutional
Layer

DeepGraphGO

spacies, ,” e~ )
i S\ species,
' Y species,
S H "
~ e species;;

species; ,’ -

p-aesi
species,
species;
species,;

—

species; .

[b]

/
i i
' '
'
~ g
Pty
‘ 1]
G
8
- 8
&

e pecien;

. ~
N
"
9,

o . ,' =~ _ species,
. ~
N \ Yik
Zﬁ:ﬂ::‘ Output Layer Predicted
.
species,, SCOreS

Graph
Convolutional
Layer



) 4
IS

DeepGraphGO architecture
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DeepGraphGO architecture
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DeepGraphGO architecture
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DeepGraphGO architecture
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DeepGraphGO architecture
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DeepGraphGO architecture
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DeepGraphGO architecture

S.-J. Chen et al., Scientific Reports, 2019
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DeepGraphGO architecture

STRING database

x17 species (human, mouse, rice, yeast, doc
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Multi-species Transfer learning

One model fits all Easy to expand the PPl network

More context

PPI Network information >> Sequence information

I
-"ll DeepGraphGO DeepFRI



DeepGraphGO resu

G0:0008150
biological process|

[b] [Suppl. Info]

Fruax AUPR
Method

MFO BPO CcCoO MFO BPO CcCO

BLAST-KNN 0.592 0.274 0.652 0.458 0.114 0.572
5.22e-52 1.49e-92 9.14e-87 8.68e-76  6.36e-100 3.98e-112

LR-InterPro 0.617 0.280 0.661 0.532 0.145 0.671
3.04e-14 1.91e-96  6.53e-85 8.11e-20 1.80e-87  5.71le-49

Net-KNN 0.425 0.306 0.667 0.274 0.157 0.642
7.94e-116  1.57e-59 2.05e-75  2.93e-111  1.02e-66 2.47e-80

DeepGOCNN 0.436 0.248 0.633 0.309 0.102 0.573
2.30e-111  1.02e-106 1.24e-103  2.46e-108  2.56e-99  1.0le-113

DeepGOPlus 0.597 0.291 0.674 0.402 0.110 0.596
EelBo-40 e /e e IS =08 D02 A G100

DeepGraphGO 0.624 0.327 0.692 0.545 0.195 0.695

. odu

DeepGraphGO
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DeepGraphGO results ~

Table 7. Performance comparison on difficult proteins Table 5. Performance comparison on proteins in HUMAN and [b]
MOUSE

Method Frnax
Method Fnas AUPR

MFO BPO cco

BLAST-KNN 0.534 0.274 0.521 MFO BPO CCO MFO BRPO QOO

LR-InterPro 0.589 0.275 0.613 HUMAN (9606)

Net-KNN 0.404 0.292 0.595 BLAST-KNN  0.471 0241 0555 0296 0.074 0.384

322§23§.T g::gj gé;ﬁ g:zgg LR-InterPro 0.593 0282 0.650 0.496 0.138 0.603

s 0208 0322 vers Net-KNN 0485 0261 0615 0358 0.143  0.620
DeecpGOCNN 0468 0263 0.594 0327 0114 0.552
nnnp(_}ﬂph]g 0_501 0277 0625 0.244 0.088 0,479

DeepGraphGO  0.633 0320 0.655 0520 0.178 0.642

MOUSE (10090)
BLAST-KNN  0.681 0289 0.593 0.593 0.105 0.441

LR-InterPro 0.628 0312 0.592 0.625 0175 0.569
Net-KNN 0420 0302 0.588 0319 0.167 0.569
DeepGOCNN 0475 0258 0574 0405 0129 0495 '
DoopCOPle Ne24 020 0598 08550 0133 0428

DeepGraphGO  0.650 0.329 0.638 0.651 0.201

. odu DeepGraphGO DeepFRI




DeepGraphGO
limitation

@ GNNSs are very slow to train
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DeepFRI - Graph Convolution Network

* Predict protein function by extracting features from sequences and protein structure

& i RelU q q .

@/ ? CaCas10h éz/ o W g /E LSTM-LM is pre-trained Extract residue-level
7 " Yj P su & 7= 152 .
=y L / ¢ g & ;E.\ ﬂ.'/ from protein database features

Id Wi L} W & = ms0 L msa ""

\ ‘ h""{ﬂ E}d,-zsa > {E H}d 512
network representation GCN Layer 2 GCN Layer 3
Input: Structure
Sequence
‘ contact map Output:
use M

i softmax i RelU RelU GSP RelU sigmoid

\i ~ é ~ G0:0000991

E = S’ 2 = g GD:DDI'HS‘N

: o3 " ||

H ) G k)

? ; G0:0003700

I ) The extracted features Construct protein-level

. iter. build n .

fete o budup sequencs : with contact maps are the features
a Long-Short-Term-Memory Language Model b Graph Convolutional Network

inputs for second stage
Schematic of DeepFRI P &

Gligorijevi¢, Nature Communications, 2020

Jg .
DeepFRI



DeepFRI performance

Compared to other methods:

1. 2 sequence-based annotation transfer
method (BLAST, FunFams)

2. Deep learning method (DeepGO)

3. Feature engineering-based machine
learning method (FFPred)

Gligorijevi¢, Nature Communications, 2020

DeepFRI




DeepFRI performance

a MF-GO (test: = 30% seq identity to train) b Robustness evaluation (MF-GO)
1.0 - |
—— BLAST (C=0.93) | DeepGO (C=1.00) 2
- FFPred (C=1.00) 0625- HEM FunFams (C=0.72) =)
081 DeepGO (C=1.00) W DeepFRI (C=1.00)
—— FunFams (C=0.64) | 0.600 +
—— DeepFRI (C=1.00) | -
5 0.6 0575 ; — %‘ -
2 | 2 ) - l I
8 AL | * o550 1 + EF
& .

04 N\ :
N 0525 *‘ }£
~ ‘ . 1
v (——_\ = | os00- Es
| =] p

0.0 02 04 06 038 1.0 30 40 50 70 95
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Precision-recall curves showing the performance of different methods

Gligorijevié¢, Nature Communications, 2020

From figure a,
* Better protein-centric F, 44
* Better performance in Molecular Function

(MF) and Biological Process (BP)

From figure b,

* Predict MF-GO proteins with < 30%
sequence identity to the training set
* DeepFRI has highest F,,,, (0.545)

Outperforms FunFams and DeepGO

DeepFRI



DeepFRI performance

Trained on PDB and tested on protein models
1.0

0.81

o
=

models and Rosetta models

Precision

o
>

* Significant denoising capability of DeepFRI

—— SEQUENCE

0.21 CMAP-Rosetta_LE
—— CMAP-DMPFold_LE d
—— CMAP_NATIVE o7
%0 o2 o4 08 o8 1o Gligorijevi¢, Nature Communications, 2020 -
R eca !
Precision-recall curves showing the performance of P
DeepFRI on 700 protein contact maps 37
. =)
From figure d, ®
0.2
* DeepFRI predicts more specific MF-GO terms with o1
fewer examples 00

IC<5

Figure c shows the result of training DeepFRI from Protein Data Bank

* DeepFRI has higher performance for native structures, DMPFold

MF

BLAST
. FFPred

DeepGO
B FunFams

DeepFRI

.91 2. .* ;
4] o "
| R il

GO Information Content

) ) L. Distribution of AUPR score on
* For proteins well represented in training set, DeepFRI MF-GO terms of different levels

has a comparable performance to FunFams of specificities

Jg .
DeepFRI




I’l’I
DeepFRI highlights

calcium ion binding (GO:0005509) 183P-A: Function = GO:0005509 :
gradCAM From figure e,
5 0.75{ — BioLiP i /
EU,SO \ )
o : : * DeeprFRI correctly identify functional sites for calcium
ions binding of protein

The two highest peaks are the calcium-binding
residues in the structure of the protein

0.00 P
4 « 0 20 40 60 80 100
I I

Residues

1S3P-A, PARVALBUMIN ALPHA

(Right) Gradient-weighted class activation map for calcium ion binding
(Left) 3D structure of a rat protein

Gligorijevi¢, Nature Communications, 2020
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DeepFRI limitation

MF (test: 2.60.40, Immunoglobulin-like)
1.0

—— BLAST
DeepGO

0.8 DeepFRI
c 06 1 .
k=l
i)
(5]
e
O p4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Recall
From supplementary information,

Precision-Recall curves showing the performance of DeepFRI

compares to DeepGO and BLAST of PDB chains from the top 4 largest
CATH folds

DeepFRI has lower performance for unseen protein

models

Limited capture of long-distance structural

correlations

Gligorijevi¢, Nature Communications, 2020
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Implications: Role of deep learning

@ ‘“Fast, sensitive detection of protein homologs using deep dense retrieval”

- Published in Nature biotechnology in 2024, by Prof. Yu Li

In Simple WOFdS, Protein sequence sa\fergtizdadég?:he Embedding  Sequence Retrieval steps for
DHR e B i ranking ranking homolog detection
b .4 and AlphaFold2
' R
1. Convert protein sequences into a roronwe | [ D | ey | @
Q n n o H UniRef90: 70M Sequences g S
special "vector" using a protein \ = . ®
language model —>ED o @
([ anees ) v‘ st
oy Query Sequence e ;
2. Compare VeCtorS ALAATDIPGLDASKLVSGVQ g RIS |
L ) Protein sequence Query
embedding
3. Skip alignment and just compare Tesk2MSA comstructionnAR: e |
. up to 93 fold speedup
the vector representation B ks
: g trrtoy
AF2 %j £ , T T ¥ JackHMMER Task 1
. . . AohaFold2 bR (8 B | Clustal ©/ HHblits Homolog detection:
4. Contrastive learning to increase ol [EO 4 L«

accuracy

Implications




Summary

* Protein function prediction - Hot research topic

* Deep learning methods >>> Sequence-based methods

e Some limitations are still unsolved

Implications




NN
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